Scattering solutions and scattering function of a Klein-Gordon s-wave equation with jump conditions

نویسندگان

چکیده

In this work, we are interested in a boundary value problem (BVP) generated by Klein -Gordon equation (KG) with Jump conditions and condition. First, introduce scattering solutions Jost solution of the problem. Then, give function prove some properties it. Lastly, conclude paper special example.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical solutions for the fractional Klein-Gordon equation

In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

Scattering theory for Klein-Gordon equations with non-positive energy

We study the scattering theory for charged Klein-Gordon equations:  (∂t − iv(x))2φ(t, x) + (x,Dx)φ(t, x) = 0, φ(0, x) = f0, i−1∂tφ(0, x) = f1, where: (x,Dx) = − ∑ 1≤j,k≤n ( ∂xj − ibj(x) ) a(x) (∂xk − ibk(x)) +m (x), describing a Klein-Gordon field minimally coupled to an external electromagnetic field described by the electric potential v(x) and magnetic potential ~b(x). The flow of the Kle...

متن کامل

Green function for Klein-Gordon-Dirac equation

The Green function for Klein-Gordon-Dirac equation is obtained. The case with the dominating Klein-Gordon term is considered. There seems to be a formal analogy between our problem and a certain problem for a 4-dimensional particle moving in the external field. The explicit relations between the wave function, Green function and initial conditions are established with the help of the T -exponen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Turkish Journal of Mathematics

سال: 2023

ISSN: ['1303-6149', '1300-0098']

DOI: https://doi.org/10.55730/1300-0098.3390